Blick in die magnetische Zukunft

Mikroskopie und Theorie

Kevin Hofhuis, Doktorand der ETH Zürich und Hauptautor der Studie, arbeitete im Rahmen seiner Doktorarbeit am PSI mit dem künstlichen Kagome-Spin-Eis
Quelle: zvg
An der SLS verwendete das Team eine spezielle Mikroskopie-Methode, die es ermöglicht, den magnetischen Zustand jedes einzelnen Nanomagneten in der Anordnung zu beobachten, die sogenannte Photoemissions-Elektronenmikroskopie an der Strahllinie SIM. Dabei wurden sie von Armin Kleibert, dem verantwortlichen Wissenschaftler bei SIM, tatkräftig unterstützt. «Wir konnten ein Video aufnehmen, das zeigt, wie die Nanomagnete miteinander wechselwirken und dies allein als Funktion der Temperatur», fasst Hofhuis zusammen. Bei den ursprünglichen Bildern handelte es sich um einfache Schwarz-Weiss-Kontraste, die ab und zu wechselten. Daraus konnten die Forschenden die Konfiguration der Spins, also die Ausrichtung der magnetischen Momente, ableiten.
«Sieht man sich ein solches Video an, weiss man aber noch nicht, in welcher Phase man sich befindet», erklärt Hofhuis. Dazu brauchte es theoretische Überlegungen, die Peter Derlet, PSI-Physiker und Titularprofessor an der ETH Zürich, beisteuerte. Seine Simulationen zeigten, was theoretisch bei den Phasenübergängen geschehen sollte. Erst der Vergleich der aufgenommenen Bilder mit diesen Simulationen bewies, dass es sich bei den mikroskopisch beobachteten Vorgängen tatsächlich um Phasenübergänge handelt.

Phasenübergänge manipulieren

Laura Heyderman und Peter Derlet untersuchen magnetische Phasenübergänge in der Materie
Quelle: Markus Fischer/PSI

Die neue Studie ist ein weiterer Erfolg in der Erforschung von künstlichem Spin-Eis, das die Gruppe von Laura Heyderman seit mehr als einem Jahrzehnt untersucht. «Das Grossartige an diesen Materialien ist, dass wir sie massschneidern und direkt sehen können, was in ihnen passiert», sagt die Physikerin. «Wir können alle möglichen faszinierenden Verhaltensweisen beobachten, darunter die Phasenübergänge und Ordnungen, die vom Layout der Nanomagnete abhängen. Dies ist bei Spin-Systemen in herkömmlichen Kristallen nicht möglich.» Obwohl diese Untersuchungen zurzeit noch reine Grundlagenforschung sind, denken die Forschenden bereits an mögliche Anwendungen. «Jetzt, da wir wissen, dass wir in diesen Materialien verschiedene Phasen sehen und auch manipulieren können, eröffnen sich neue Möglichkeiten», sagt Hofhuis.
Die Kontrolle von verschiedenen magnetischen Phasen könnte für neuartige Arten der Datenverarbeitung interessant sein. Am PSI und anderswo wird untersucht, wie die Komplexität von künstlichem Spin-Eis für neuartige Hochgeschwindigkeitsrechner mit geringem Stromverbrauch genutzt werden könnte. «Dabei orientiert man sich an der Informationsverarbeitung im Gehirn und macht sich zunutze, wie das künstliche Spin-Eis auf einen Reiz wie ein Magnetfeld oder elektrischen Strom reagiert», erklärt Heyderman.
Autorin: Barbara Vonarburg/PSI

Autor(in) pd/ jst



Das könnte Sie auch interessieren