Starke Kopplung durch Spin-Trio

Ladungsverschiebung durch Tunneln

Nach den Regeln der Quantenmechanik können die Elektronen zudem mit einer gewissen Wahrscheinlichkeit zwischen den Quantenpunkten hin und her tunneln. Dadurch kann es vorkommen, dass sich von den drei Elektronen zeitweise zwei in demselben Quantenpunkt befinden, wogegen einer leer bleibt. In dieser Konstellation ist die elektrische Ladung nun ungleich verteilt. Durch diese Ladungsverschiebung wiederum entsteht ein elektrischer Dipol, der stark an das elektrische Feld eines Mikrowellenphotons koppeln kann.
Diese starke Kopplung konnten die ETH-Wissenschaftler durch eine Messung der Resonanzfrequenz des Mikrowellenresonators eindeutig nachweisen. Dabei beobachteten sie, wie sich die Resonanz des Resonators durch die Kopplung an das Spin-Trio aufspaltete. Aus den Daten konnten sie herleiten, dass die Kohärenz des Spin-Qubits über mehr als 10 Nanosekunden erhalten blieb.

Spin-Trios für Quanten-Bus

Die Forscher sind zuversichtlich, dass mit dieser Technik schon bald ein Übertragungsweg für Quanteninformation zwischen zwei Spin-Qubits (ein sogenannter Quanten-Bus) realisiert werden kann. «Dafür müssen wir zwei Spin-Trios an beiden Enden des Mikrowellenresonators platzieren und zeigen, dass die Qubits dann über ein Mikrowellenphoton miteinander gekoppelt sind», sagt der Erstautor der Studie Andreas Landig, Doktorand in Ensslins Gruppe. Damit wäre ein wichtiger Schritt in Richtung eines Netzwerks von räumlich verteilten Spin-Qubits getan. Zudem betonen die Forscher, dass sich ihre Methode problemlos auf andere Materialien wie zum Beispiel Graphen übertragen lässt und damit sehr vielseitig ist.
Dieser Beitrag ist ursprünglich bei «ETH-News» erschienen.

Autor(in) Oliver Morsch, ETH News


Das könnte Sie auch interessieren