Der Computer als Super-Mikroskop für lebenswichtige Moleküle

Ein Monat für eine Simulation

Neben der zeitlichen Dimension bestimmt die Anzahl der Atome im System die Komplexität der Berechnung. Kleine Moleküle wie zum Beispiel die zyklischen Peptide bestehen aus wenigen hundert Atomen. Grosse Moleküle wie die Proteine umfassen mitsamt dem umgebenden Wasser 10'000 bis 100'000 Atome. Daraus ergeben sich für eine einzige Simulation mehr als 100 Millionen Wechselwirkungen, die in jedem einzelnen Schritt zu berechnen sind.
Selbst modernste Computercluster, wie der Hochleistungs-Rechner der ETH oder das nationale Rechenzentrum CSCS in Lugano, benötigen für die Simulation der Bewegung eines zyklischen Peptids über den Zeitraum von einer Mikrosekunde rund einen Monat. Die Zeitspanne mehrerer Mikrosekunden ist notwendig, um die Bewegungen eines Peptids ausreichend zu beschreiben. Am Computer wird eine Vielzahl von möglichen Veränderungen durchgerechnet, sodass man aus der Menge der Möglichkeiten herausfinden kann, wie Veränderungen die Eigenschaften der Peptide beeinflussen. Die Erkenntnisse der Simulation werden danach im Labor experimentell überprüft.

Ergänzende Einsichten zu Experimenten im Labor

Die Simulation am Computer ersetzt die experimentelle Forschung im Labor somit nicht, sondern sie ergänzt sie: Eine Simulation von grösseren Molekülen zum Beispiel baut auf experimentellen Daten auf. «Dank der Computermethoden haben wir eine Art Mikroskop, das uns erlaubt, die molekulare Dynamik auf atomarer Ebene und für einzelne Moleküle zu betrachten. Das ist mit anderen Methoden nicht möglich», sagt Riniker. «Mit den Simulationen können wir die experimentellen Ergebnisse zu einem Gesamtbild vervollständigen.»
Um komplexe Themen wie die Eigenschaften von zyklischen Peptiden durch Simulationen erforschen zu können, sind spezialisierte Computerprogramme notwendig. Diese entwickelt die Arbeitsgruppe von Sereina Riniker selber. Zudem braucht es detaillierte Kenntnisse aus verschiedenen Bereichen der Naturwissenschaften, was sich an der interdisziplinären Zusammensetzung der Arbeitsgruppe von Riniker zeigt, in der Studenten, Doktoranden und Postdoktoranden aus Chemie, Physik, Biologie sowie Informatik eng zusammenarbeiten und sich regelmässig austauschen. «Forschung ist Teamarbeit», sagt Sereina Riniker abschliessend.
Dieser Beitrag ist zunächst bei ETH-News erschienen.

Autor(in) Florian Meyer, ETH-News



Das könnte Sie auch interessieren