17.11.2016, 10:00 Uhr

Wie mobilezone Betrügern das Handwerk legt

Der Telekommunikationsanbieter mobilezone deckt dank neuer Analyse-Technologien betrügerisches Kundenverhalten auf noch bevor grössere Schäden entstehen.
Der Schweizer Mobilfunkmarkt wächst trotz bereits grosser Durchdringung beständig. Ein Grund sind mehrere Mobilfunkverträge pro Person. Unter den Kunden sind aber auch schwarze Schafe. Deshalb hat der Dienstleister IT-Logix bei mobilezone eine automatisierte Lösung eingeführt, mit der Gruppen betrügerisch erschlichener Verträge identifiziert werden können.
Das Vorgehen der Betrüger war bis anhin vergleichsweise simpel: Sie schlossen unter leicht veränderten Namen neue Verträge für Geräte mit hohen Rabatten ab – oft in grosser Zahl und an mehreren Verkaufspunkten. Die Rechnungen der Provider bezahlen sie aber nicht. So erlitt mobilezone in Vergangenheit finanzielle Schäden, welche oftmals hätten vermieden werden könnten. 

Monatlich 25'000 Verträge

Das Problem bei den Betrugsfällen war, dass sie jeweils zu spät erkannt wurden. Kunden konnten sich in verschiedenen mobilezone-Shops neueste Mobilegeräte gratis ergattern, indem sie die Bonitätsprüfungen der Netzbetreiber manipulierten. Entweder fiel der Betrug erst jemandem in der Firmenzentrale auf, weil sich Verträge mit ähnlich lautenden Namen häuften, oder aber er wurde erst bemerkt, wenn ein Telekomanbieter die Provision für die Verträge nicht ausbezahlte. Mit der bestehenden Kassen-Software konnte mobilezone dem Problem nicht Herr werden, hätte man doch die Vertragsdaten manuell prüfen müssen. Dieser Prozess wäre bei monatlich rund 25'000 neuen Verträgen viel zu aufwendig gewesen.  Angesichts von jährlich zwei bis drei sehr grossen Betrugsfällen wurde das Problem schnell zu einem Posten, der richtig Geld kostete. «Aufgrund der Höhe der Summe, die durch solche Frauds entstehen, entschieden wir uns zum Handeln», sagt Philipp Müller, Leiter Controlling bei mobilezone. «Um künftig grössere Provisionsausfälle verhindern zu können, sollten Logiken entwickelt werden, die mögliche Betrugsfälle unmittelbar aufdecken.» Nächste Seite: Cloud identifiziert Betrüger
Müller startete gemeinsam mit den Experten von IT-Logix ein Projekt, um Kassendaten automatisch zu analysieren und Verträge zu identifizieren, die potenziell einer einzigen Person zugeordnet werden können. Es sollten mindestens zweimal täglich mögliche Betrugsfälle vom Controlling in der mobilezone-Zentrale erkannt und innerhalb von ein bis zwei Stunden die potenziell fraudelenten Transaktionen detailliert geprüft werden.  Innerhalb von vier Wochen hatte mobilezone zusammen mit IT-Logix die Logiken inklusive der Schnittstellen definiert und programmiert. Die technische Umsetzung geschah unter Zuhilfenahme von Microsoft SQL Server Integration Services (SSIS) mit Azure-Cloud-Datenbank sowie Azure Machine Learning. Nach der Entwicklung der eigentlichen Workflow-Logik durch IT-Logix erfolgte das Design des SSIS-Jobs innerhalb der Visual-Studio-Umgebung. Der Webservice von Azure Machine Learning konnte schliesslich quasi per Knopfdruck generiert werden.

Verdächtige Namen und Standorte

Heute läuft die Datenverarbeitung in drei Schritten ab: Zunächst werden aus dem Kassensystem die Vertragsdaten der letzten zwei Monate in die Azure-Datenbank geladen. Anschliessend erfolgt die Datenanalyse innerhalb Azure Machine Learning, indem die Informationen aus der Azure-Datenbank gelesen und anhand eines Algorithmus zur Betrugserkennung abgeglichen werden.  Die verdächtigen Vertragsdaten werden anschliessend zurück in die SQL-Datenbank in der Azure-Cloud geschrieben, von wo aus sie wiederum in die On-Premise-Datenbank von mobilezone gespielt werden. Dieser Workflow erfolgt heute zweimal täglich, wobei nur die seit dem letzten Run neu hinzugekommenen Verträge in die Cloud-Datenbank übertragen und mit denen in Azure Machine Learning abgeglichen werden.

Alle Betrüger identifiziert

Seit der Einführung des Analyse-Services hat sich der Aufwand für mobilezone längst ausgezahlt. So konnten schon innerhalb der ersten sechs Monate fünf potenzielle Betrüger identifiziert werden. «Mit der neuen Analysetechnik haben wir bereits potenziell hohe Verluste abgewendet», sagt Müller, «Seit der Inbetriebnahme der Betrugserkennungslösung Anfang 2016 sind keine grösseren Schäden aufgetreten.» 
Nun steht mobilezone ein automatischer Service zur Verfügung, der die manuelle Prüfung ersetzt. Er verhindert auch, dass durch Betrug oder ungenaues Arbeiten hervorgerufene finanzielle Schäden überhaupt erst entstehen. Mit einem nächsten Projekt wird der automatische Transfer der relevanten Informationen direkt an den Point of Sale realisiert. Wenn dann ein neuer Vertrag im Kassensystem erfasst wird, kann die Verkaufsperson per Knopfdruck den Webservice mit Azure Machine Learning abrufen und so bereits beim Abschluss eines Vertrags erkennen, ob der Kunde potentiell betrügerische Absichten hat.

Das könnte Sie auch interessieren