Quantencomputer 25.03.2022, 13:30 Uhr

Mehr Qubits mit Licht und Europium-Ionen

Forschende des Karlsruher Instituts für Technologie (KIT), der Universität Strassburg, der Chimie ParisTech und der nationalen französischen Forschungsorganisation CNRS bringen die Entwicklung von Materialien zur Verarbeitung von Quanteninformation mit Licht voran.
Darstellung der Photon-Spin-Schnittstelle mit dem Europium-Molekülkristall zur Vernetzung von Kernspin-Qubits (Pfeile) mithilfe von Photonen (gelb).
(Quelle: Grafik: Christian Grupe, KIT)
In der Zeitschrift Nature präsentieren sie ein zu den Metallen der Seltenen Erden gehörendes kernspinhaltiges Europium-Molekül, mit dem sich eine effektive Photon-Spin-Schnittstelle verwirklichen lässt. Die Forschenden erwarten sich eine hohe Dichte an Qubits sowie einen Schritt hin zum Quanteninternet.
Ein Quantenbit (Qubit) kann sich gleichzeitig in vielen verschiedenen Zuständen zwischen 0 und 1 befinden. Diese sogenannte Quantensuperposition ermöglicht, Daten massiv parallel zu verarbeiten. Dadurch steigt die Rechenleistung von Quantencomputern gegenüber digitalen Computern exponentiell. Um Rechenoperationen durchführen zu können, müssen die Überlagerungszustände eines Qubit allerdings eine gewisse Zeit lang bestehen. Die Quantenforschung spricht von Kohärenzlebensdauer. Kernspins, das heisst Drehimpulse der Atomkerne in Molekülen ermöglichen Überlagerungszustände mit langen Kohärenzlebensdauern. Denn die Kernspins sind gut von der Umgebung abgeschirmt, sodass sie die Qubits vor störenden äusseren Einflüssen schützen.
Professor Mario Ruben*: «Um praktische Anwendungen zu ermöglichen, müssen wir Quantenzustände speichern, verarbeiten und verteilen können. Dazu haben wir nun ein vielversprechendes neuartiges Material identifiziert: ein kernspinhaltiges Europium-Molekül, das zu den Metallen der Seltenen Erden gehört.» In einer in der Zeitschrift Nature erschienenen Publikation stellen Forschende um die Professoren Mario Ruben das innovative Material vor.Das Molekül ist so aufgebaut, dass es bei Laseranregung Lumineszenz zeigt, das heisst Lichtteilchen aussendet, welche die Kernspininformation tragen. Durch gezielte Laserexperimente lässt sich damit eine effektive Licht-Kernspin-Schnittstelle schaffen. Die vorliegende Arbeit zeigt die Adressierung von Kernspinniveaus mithilfe von Photonen, die kohärente Speicherung von Photonen sowie die Ausführung erster Quantenoperationen.

Hohe Dichte an Qubits

Um nützliche Quantenoperationen durchzuführen, bedarf es vieler Qubits, die miteinander quantenmechanisch verbunden werden. Für diese Verschränkung müssen die Qubits miteinander wechselwirken können. Die Forschenden aus Karlsruhe, Strassburg und Paris weisen in ihrer Arbeit nach, dass sich die Europium-Ionen in den Molekülen über elektrische Streufelder so miteinander koppeln können, dass künftig Verschränkung und damit Quanteninformationsverarbeitung möglich wird. Da die Moleküle atomgenau aufgebaut sind und sich in exakten Kristallen anordnen, soll sich eine hohe Qubit-Dichte erreichen lassen.
Ein weiterer Aspekt ist die Adressierbarkeit der einzelnen Qubits. Mit optischer Adressierung lässt sich die Auslesegeschwindigkeit steigern, lassen sich störende elektrische Zuführungen vermeiden, und durch Frequenzseparation lässt sich eine Vielzahl von Molekülen individuell adressieren. Die vorliegende Arbeit, so die Forschenden, erreicht gegenüber früheren Arbeiten eine rund tausendfach verbesserte optische Kohärenz in einem molekularen Material. Damit lassen sich Kernspinzustände gezielt optisch manipulieren.

Ein Schritt hin zum Quanteninternet

Licht eignet sich auch dazu, Quanteninformation über grössere Distanzen zu verteilen, um beispielsweise Quantenrechner miteinander zu verknüpfen oder Informationen abhörsicher zu übertragen. Durch Integration des neuartigen Europium-Moleküls in photonische Strukturen zur Verstärkung der Übergänge könnte auch dies in Zukunft möglich sein. "Unsere Arbeit bildet einen wichtigen Schritt hin zu Quantenkommunikationsarchitekturen mit seltenerdbasierten Molekülen als Grundlage für ein Quanteninternet", sagt Professor David Hunger vom IQMT des KIT.
* Professor Mario Ruben ist Leiter der Forschungsgruppe Molecular Quantum Materials am Institut für Quantenmaterialien und -technologien (IQMT) des KIT sowie des European Center for Quantum Sciences – CESQ an der Universität Strassburg.

Bernhard Lauer
Autor(in) Bernhard Lauer



Das könnte Sie auch interessieren